Силы ван дер ваальса формула. §61. Уравнение Ван-дер-Ваальса. Критическое состояние вещества

Реальным газом называют газ, между молекулами которого существуют заметные силы взаимодействия. В неидеальных, газах под высоким давлением, газах с большой плотностью взаимодействие молекул велико и его необходимо учитывать. Силы притяжения играют наиболее существенную роль на больших расстояниях между молекулами. Расстояние уменьшается, силы притяжения растут, но до определенного предела, затем они начинают уменьшаться и переходят в силы отталкивания. Притяжение и отталкивание молекул можно разделить и рассматривать и учитывать отдельно друг от друга.

Уравнение Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса, описывающее состояние 1 моля реального газа, имеет вид:

Уравнение Ван-дер-Ваальса

\[\left(p+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT\ \left(1\right),\]

где${\ V}_{\mu }$- молярный объем газа, $\frac{a}{V^2_{\mu }}$- внутреннее давление, обусловленное силами притяжения между молекулами, b -- поправка на собственный объем молекул, которая учитывает действие сил отталкивания между молекулами, причем

где d- диаметр молекулы,

величина a вычисляется по формуле:

где $W_p\left(r\right)$- потенциальная энергия притяжения двух молекул. Необходимо заметить, что газовая постоянная имеет индивидуальное значение для каждого вещества. Она отличается от молярной газовой постоянной, причем она меньше, что говорит об объединении молекул вещества в комплексы около критического состояния. Вдали от критических состояний можно использовать универсальную газовую постоянную.

С увеличением объема роль поправок в уравнении (1) становится менее существенной. И в пределе уравнение (1) переходит в уравнение состояния идеального газа для 1 моля (4):

Уравнение (4) -- уравнение Менделеева -- Клайперона, где m- масса газа, $R=8,31\ \frac{Дж}{моль\cdot К}$- универсальная газовая постоянная.

Это согласуется с тем фактом, что при уменьшении плотности реальные газы по своим свойствам приближаются к идеальным.

Уравнение (1) может быть записано в вириальной форме:

\[{pV}_m=RT+\frac{RTb"-a"}{V_m}+RT\sum\limits^{\infty }_{n=2}{\frac{{b"}^n}{V^n_m}}\ \left(5\right),\]

где $V_m=\frac{V}{\nu }.$

Для анализа изотерм уравнение (1) удобнее представить в виде:

Рассматриваемое уравнение может описывать и свойства жидкости, например плохую ее сжимаемость.

На рис.1 изображена изотерма Ван-дер-Ваальса для некоторого постоянного значения температуры T, построенная из соответствующего уравнения.

Такая зависимость на практике невозможна. Опыт показывает, что график должен иметь вид рис.2 то есть существуют области, в которых при изменении объема давление неизменно. В некоторых отрезках график изотермы параллелен оси V (рис 2). Это область фазового перехода. Жидкость и газ существую одновременно.

По мере увеличения температуры участок, отражающий состояние нахождения газа одновременно в двух фазах на графиках p(V), сужается и превращается в точку (рис. 2). Это особая точка К, в которой пропадает различие между жидкостью и паром. Это так называемая критическая точка.

Вывод

Итак, уравнение Ван-дер-Ваальса описывает поведение газов близких к реальным. Их можно применить к газообразной и жидкой фазам вещества. Эти уравнения отражают существование фазового перехода газ -- жидкость. Показывают наличие критической точки перехода. Однако абсолютно точных количественных результатов расчеты, в которых используются вышеназванные уравнения, не дают.

Пример 1

Задание: Газ в количестве 1 моль находится в сосуде объемом V л при температуре $T_1$ давление газа $p_1$, а при $T_2$ давление газа $p_2$. Найти постоянные Ван-дер-Ваальса.

Запишем уравнение Ван-дер-Ваальса для одного моля реального газа для состояний 1 и 2:

\[\left(p_1+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT_1\ \left(1.1\right).\] \[\left(p_2+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT_2\ \left(1.2\right).\]

Раскроем скобки в (1.1):

\ \

Вычтем $\left(1.4\right).\ из\ \left(1.3\right):$

\ \ \[-p_1b{+p}_2b=RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }\to b=\frac{RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }}{p_2-p_1}\left(1.5\right).\]

Выразим a из (1.1):

Ответ: $b=\frac{RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }}{p_2-p_1},\ a=\frac{RT_1-p_1V_{\mu }+p_1b}{\left(\frac{1}{V_{\mu }}-\frac{b}{V^2_{\mu }}\right)}$.

Пример 2

Задание: Для реального газа, используя уравнение Ван-дер-Ваальса, получите уравнение адиабаты в параметрах V и T.

\[\delta Q=dU+\partial A=0\ \left(\ 2.1\right)\]

Так как процесс адиабатный, то он идет теплообмена. Перепишем уравнение (2.1) для ван-дер-ваальсовского газа, зная, что:

\ \

Из уравнения Ван-дер-Ваальса:

\[\left(p+\frac{a}{V^2}\right)\left(V-b\right)=RT\ \to p+\frac{a}{V^2}=\frac{RT}{\left(V-b\right)}\ \left(2.5\right)\]

Подставим (2.5) в (2.4), разделим переменные:

\[\frac{RT}{\left(V-b\right)}dV+\frac{i}{2}\nu RdT\ =0\to \frac{Rd(V-b)}{\left(V-b\right)}=-\frac{i}{2}\nu R\frac{dT}{T}(2.6)\ \] \[\frac{d(V-b)}{\frac{i}{2}\nu \left(V-b\right)}=-\frac{dT}{T}(2.7)\ \]

Проинтегрируем (2.7):

Ln$\left({\left(V-b\right)}^{\frac{i}{2}\nu }T\right)=0\to {\left(V-b\right)}^{\frac{i}{2}\nu }T=const.$

Ответ: Уравнение адиабаты для заданного случая имеет вид: ${\left(V-b\right)}^{\frac{i}{2}\nu }T=const.$

Критические явления

Изотерма при температуре Т с играет особую роль в теории состояния вещества. Изотерма, соответствующая температуре ниже Т с> ведет себя так, как уже описано: при определенном давлении газ конденсируется в жидкость, которую можно различать по наличию поверхности раздела. Если же сжатие осуществлять при Т с, то поверхность, разделяющая две фазы, не появляется, а точка конденсации и точка полного перехода в жидкость сливаются в одну критическую точку газа. При температуре выше Т с газ невозможно обратить в жидкость никаким сжатием. Температура, давление и мольный объем в критической точке называются критической температурой Т с, критическим давлением р с и критическим мольным объемом V c вещества. Собирательно параметры р с, V c , и Т с называются критическими константами данного газа (табл. 10.2).

При Т>Т С образец представляет собой фазу, полностью занимающую объем содержащего ее сосуда, т.е. по определению является газом. Однако плотность этой фазы может быть значительно большей, чем это типично для газов, поэтому обычно предпочитают название "сверхкритический флюид" (supercritical fluid). При совпадении точек Т с и Р с жидкость и газ неразличимы.

Таблица 10.2

Критические константы и температуры Бойля

То К

Р с, бар

V c , мл моль -1

Т B К

т B /т с

В критической точке изотермический коэффициент сжимаемости

равен бесконечности, поскольку

Поэтому вблизи критической точки сжимаемость вещества так велика, что ускорение силы тяжести приводит к значительным различиям плотности в верхней и нижней частях сосуда, достигающим 10% в столбике вещества высотой всего несколько сантиметров. Это затрудняет определение плотностей (удельных объемов) и, соответственно, изотерм р - V вблизи критической точки. В то же время критическую температуру можно определить весьма точно как такую температуру, при которой поверхность, разделяющая газообразную и жидкую фазы, исчезает при нагревании и вновь появляется при охлаждении. Зная критическую температуру, можно определить критическую плотность (и, соответственно, критический мольный объем), пользуясь эмпирическим правилом прямолинейного диаметра (правило Кальете Матиаса), согласно которому средняя плотность жидкости и насыщенного пара является линейной функцией температуры:

(10.2)

где A и В - постоянные для данного вещества величины. Экстраполируя прямую средней плотности до критической температуры, можно определить критическую плотность. Высокая сжимаемость вещества вблизи критической точки приводит к росту спонтанных флуктуаций плотности, которые сопровождаются аномальным рассеянием света. Это явление называется критической опалесценцией.

Уравнение Ван-дер-Ваальса

Уравнение состояния и явления переноса в реальных газах и жидкостях тесно связаны с силами, действующими между молекулами. Молекулярно-статистическая теория, связывающая общие свойства с межмолекулярными силами, сейчас хорошо разработана для разреженных газов и в меньшей степени - для плотных газов и жидкостей. Вместе с тем измерение макроскопических свойств позволяет в принципе определить закон, по которому действуют силы между молекулами. Более того, если вид взаимодействия определен, то становится возможным получить уравнение состояния или коэффициенты переноса для реальных газов.

Для идеальных газов уравнение состоянияили

Это соотношение совершенно точно в том случае, когда газ весьма разрежен или его температура сравнительно высока. Однако уже при атмосферных давлении и температуре отклонения от этого закона для реального газа становятся ощутимыми.

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван- дер-Ваальса (1873).

Ван-дер-Ваальс сделан первую попытку описать эти отклонения, получив уравнения состояния для реального газа. Действительно, если уравнение состояния идеального газа pV = RT применить к реальным газам, то, во-первых, под объемом, могущим изменяться до пуля, необходимо понимать объем межмолекулярного пространства, так как только этот объем, как и объем идеального газа, может уменьшаться до нуля при неограничeнном возрастании давления.

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

(10.3)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры мeжмолeкулярное взаимодействие в реальных газах приводит к конденсации (образованию жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

Й. Д. Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса силы притяжения между молекулами (силы Ван-дер-Ваальса) обратно пропорциональны шестой степени расстояния между ними или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(10.5)

или для 1 моля

(10.6)

Значения постоянных Ван-дер-Ваальса а и b, которые зависят от природы газа, но не зависят от температуры, приведены в табл. 10.3.

Уравнение (10.6) можно переписать так, чтобы выразить в явном виде давление

(10.7)

или объем

(10.8)

Таблица 10.3

Постоянные Ван-дер-Ваальса для различных газов

а,

л 2 бар моль -2

ь,

см 3 моль -1

а,

л 2 бар моль -2

ь,

см 3 моль -1

Уравнение (10.8) содержит объем в третьей степени и, следовательно, имеет три действительных корня, или один действительный и два мнимых.

При высоких температурах уравнение (10.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

На рис. 10.4 приведены изотермы, вычисленные по уравнению Ван-дер- Ваальса для диоксида углерода (значения констант а и b взяты из табл. 10.3). На рисунке показано, что при температурах ниже критической (31,04°С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 1-2-3-4-5 с тремя действительными корнями, из которых только два, в точках 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 2-3-4, противоречащем условию стабильности термодинамической системы -

Рис. 10.4. Изотермы Ван-дер-Ваальса для С0 2

Состояния на участках 1-2 и 5-4 , которые отвечают переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильиыми) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (см. рис. 10.4), можно подняться по кривой 1-2. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в гаком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след - трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction ), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 1-2-3-4-5 провести горизонтальную прямую 1-5 так, чтобы площади 1-2-3-1 и 3-4-5-3 были равны. Тогда ордината прямой 1-5 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 - мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре Т с становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба

с горизонтальной касательной

(10.9)

(10.10)

Совместное решение этих уравнений дает

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер- Ваальса, критический фактор сжимаемости Z c для всех газов должен быть равен

Из табл. 10.2 очевидно, что хотя значение Z c для реальных газов приблизительно постоянно (0,27- 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

  • 1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции /(/?, V Т), описывающей свойства реальных газов;
  • 2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);
  • 3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме - см. выражения (10.1), (10.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров а и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (10.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной Ь. Больцман получил три уравнения этого типа, изменяя выражения для постоянной а. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее пяти индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне р, V ", Т, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло.

Уравнение Ван–дер–Ваальса (7.1.2) – одно из первых уравнений состояния реального газа. Данное уравнение учитывает конечные размеры всех молекул, что становится существенным при больших давлениях, а также притяжение молекул в результате межмолекулярного взаимодействия.

Уравнение состояния реального газа, предложенное Ван–дер–Ваальсом можно получить из следующих рассуждений. Учтем влияние конечных размеров молекул на уравнение состояния реального газа. Давление определяется средней кинетической энергией теплового движения всех молекул Р = nkT. 7.2.1 При конечных размерах молекул, имеющих радиус r, область 4p(2r) 3 /3 вокруг каждой из молекул будет недоступна для попадания в нее другой неточечной молекулы. В результате в сосуде, содержащем N молекул конечных размеров, область объемом (N/2)4p(2r) 3 /3 = 4NV молек (V молек = 4pr 3 /3 – объем одной молекулы) будет недоступна для столкновений. Поэтому можно считать, что половина всех молекул занимает объем b = 4NV молек и покоится, а другая половина представляет собой точечные молекулы и движется с удвоенной кинетической энергией, обладая температурой Т´ = 2Т. Объем, доступный точечным молекулам, будет равен V - b , а давление, оказываемое на стенки сосуда, определяется точечными подвижными молекулами (N´ = N/2):

Р = n´kT´ =

Если в сосуде находится один моль газа, то уравнение состояния примет вид (N = N A , N A k = R, b = 4N A V молек):

P(V - b) = RT.

Для v = m/m молей газа уравнение состояния газа с учетом конечного размера молекул примет вид

P(V - nb) = nRT.

Отметим, что это уравнение является приближенным и выведено в предположении только парных столкновений. При больших давлениях это условие уже не выполняется, и возможно одновременное соприкосновение трех и более частиц, а такие случаи были исключены из рассмотрения.

Рассмотрим теперь влияние сил притяжения на уравнение состояния идеального газа. Будем считать для простоты частицы газа точечными. Наличие сил притяжения между ними, действующих на больших расстояниях, приводит к появлению дополнительного внутреннего воздействия на газ. Это обусловлено тем, что в то время как в объеме газа действие сил притяжения между молекулами в среднем уравновешивается, на границе «газ – стенка сосуда» действие сил притяжения со стороны газа остается не скомпенсированным, и появляется избыточная сила, направленная в сторону газа (рис. 7.3).


Рис. 7.3

Дополнительное внутреннее давление пропорционально числу частиц, приходящихся на единицу площади границы n S и силе взаимодействия этих частиц с другими частицами газа, находящимися в единице объема n V .

В результате избыточное внутреннее давление P i (i - intrinsic) будет пропорционально квадрату концентрации числа частиц

P i ~ n S n V ~ N 2 /V 2 ,

где N – полное число частиц в сосуде объема V . Если N = N A – в сосуде находится один моль газа, то запишем

P i = a/V 2 ,
где а – постоянная величина, своя для каждого сорта газа. В случае v -молей имеем

P i = v 2 a/V 2 .

С учетом внутреннего давления уравнение состояния примет вид

P + P i = nkT.

Давление P i не зависит от материала стенки, в противном случае удалось бы создать вечный двигатель первого рода. Роль стенки может играть и сам газ. Достаточно для этого выполнить мысленное сечение произвольной плоскостью любой внутренней области объема газа. Полученное уравнение, с учетом выражения для P i переходит в новое уравнение состояния реального газа при наличии сил притяжения:

(P + v 2 a/V 2)V = vRT.

Учитывая совместное действие сил притяжения и сил отталкивания и полученные поправки для объема и давления в уравнении Менделеева – Клапейрона, получим уравнение Ван–дер–Ваальса для реального газа:

(P + v 2 a/V 2)(V - vb) = vRT , (7.2.3)

или для одного моля:

. 7.2.4

Данное уравнение справедливо при условии vb и v 2 a/V 2 Помимо этого предполагается, что частицы газа сферически симметричны. Поскольку реально это не так, то даже для неплотных газов величины а и b зависят от температуры. Константы Ван–дер–Ваальса и критические данные приведены в таблице 7.1

Таблица 7.1.

Pk ,
атм

Vk ,
м 3 /кмоль

Т k ,
К

а ,
ат×м 6 /кмоль2

b ,
м 3 /кмоль

R /N A k

HCl
H 2
He
H 2 O
O 2
N 2
CO 2

86
13,2
2,34
225
51,4
34,8
75

0,060
0,065
0,058
0,055
0,075
0,090
0,096

324,6
33,2
5,2
647,3
154,3
126,0
304,1

0,922
0,194
0,035
5,65
1,40
1,39
3,72

0,020
0,022
0,024
0,031
0,032
0,039
0,043

0,469
0,813
0,821
0,602
0,768
0,782
0,745

Примечание. Константы а и b выбраны таким образом, чтобы получить оптимальное согласование уравнения Ван–дер–Ваальса с измеренными изотермами для комнатной температуры. Для плотных газов уравнение Ван–дер–Ваальса как количественное соотношение не годится. Однако качественно оно позволяет описывать поведение газов при высоких давлениях, конденсацию газов и переход газов в критическое состояние.

Как мы уже упоминали, при низких температурах и высоких давлениях уравнение состояния идеального газа Менделеева – Клапейрона непригодно.

Учитывая собственный объём молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван – дер – Ваальс (1837 – 1923 г.г.) вывел уравнение " реального газа ", используя две поправки для уравнения Менделеева – Клапейрона.

Учёт собственного объёма молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объём других молекул, приводит к тому, что фактический свободный объём, в котором могут двигаться молекулы реального газа, будет равен не V μ (как в уравнении Менделеева – Клапейрона для одного моля газа), а V = (V μ -b) , где b – поправка на собственный объём молекул.

Можно показать, что поправка b равна учетверённому объёму молекул. Действительно, если, например, сближаются две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы (оболочки молекул считаются непроницаемыми). Это означает, что для центров обеих молекул оказывается недоступным сферический объём радиуса d, т.е. объём, равный восьми объёмам молекулы или учетверённому объёму молекулы в расчёте на одну молекулу.

Учёт притяжения молекул. Поскольку при определённых расстояниях между молекулами действуют силы притяжения (а они, как мы уже говорили, проявляются раньше сил отталкивания), то их действие приводит к появлению " дополнительного " действия на молекулы " идеального " газа. Это давление Ван – дер – Ваальс назвал " внутренним " давлением. По модели "реального" газа вычисления показали, что " внутреннее " давление молекул обратно пропорционально квадрату молярного объёма, т.е.:

, (17.6)

где а – вторая постоянная (поправка) Ван – дер – Ваальса, характеризующая действие сил межмолекулярного притяжения, V μ – молярный объём газа.

Вводя эти поправки, получим итоговое уравнение Ван – дер – Ваальса для одного моля газа :

. (17.7)

Для произвольного количества вещества в ν молей газа (т.к. ν = m/M μ ) с учётом того, что V = ν V μ , уравнение Ван – дер – Ваальса примет вид:

, (17.8)

где поправки a и b – постоянные для каждого индивидуального газа величины, вычисляемые из экспериментальных данных (в простейшем случае записываются уравнения Ван – дер – Ваальса для двух известных из опыта состояний газа и решаются относительно величин a и b ).

Поскольку при выводе уравнения для " реального " газа Ван – дер – Ваальсом был сделан ряд весьма существенных упрощений, поэтому оно так же, как и уравнение Менделеева – Клапейрона является достаточно приближённым уравнением, которое, однако, лучше (особенно для не очень сильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.



Для более точного описания опытных данных для реальных газов пользуются эмпирическими уравнениями состояния, чаще всего уравнением Камерлинг – Оннеса, имеющим вид:

, (17.9)

которое построено с таким расчётом, чтобы всегда имелась возможность привести это уравнение к согласию с данными опыта простым вписыванием дополнительных членов без изменения формы уравнения. Коэффициенты B,C, F называются вириальными коэффициентами и представляются в виде многочленов, расположенных по возрастающим степеням Т -1 :

, (17.10)

и аналогично для коэффициентов C,D,E,F .

Уравнение Ван–дер–Ваальса:

где постоянные поправки а и b зависят от природы газа.


Поправка b учитывает объем, недоступный для движения молекул в силу конечности объема самих молекул и наличия взаимодействия между ними. Величина b составляет примерно учетверенный объем самих молекул.

Поправка а учитывает силы взаимного притяжения. Полагая, что внутреннее давление газа изменяется пропорционально квадрату плотности или обратно пропорционально квадрату удельного объема газа, Ван-дер-Ваальс принял его равным а/J 2 , где а – коэффициент пропорциональности.


Раскрывая скобки в левой части:

Умножая равенство на J 2 и разделив на р :


Полученное уравнение имеет три корня, т.е. при заданных параметрах р и Т имеется три значения переменной J, которые превращают уравнение в тождество.

Рассмотрим в системе координат р–J изотермы, построенные по уравнению Ван-дер-Ваальса.


Первый случай имеет место при высоких температурах, когда изотермы имеют вид кривых гиперболического характера (линия 1-2). Каждому давлению соответствует определенный удельный объем (давлению р а соответствует удельный объем J а). Тело в этом случае при любых давлениях находится в газообразном состоянии.


Второй случай имеет место при сравнительно низких температурах, когда изотермы имеют два перегиба (линия 3-4).

В этом случае между точками e и f находится область, в которой каждому давлению соответствует три значения удельного объема (давлению р а соответствуют удельные объемы J b , J с и J d), которые и являются тремя действительными и различными корнями уравнения Ван-дер-Ваальса.


Участок 3-b соответствует изотермическому сжатию тела, находящегося в газообразном состоянии, причем в точке b оно уже начинает переходить в жидкое состояние.

Точка d соответствует такому состоянию тела, когда оно уже полностью превратилось в жидкость, в соответствии с чем участок d-4 представляет собой изотермическое сжатие жидкости.


Точка с соответствует промежуточному двухфазному состоянию тела. Участок кривой b-f соответствует неустойчивому состоянию пара, а участок d-e – неустойчивому состоянию жидкости.

Что касается участка e-f, то он вообще физического смысла не имеет, поскольку в действительности при изотермическом сжатии тело переходит из газообразного в жидкое состояния при постоянном давлении, т.е. по горизонтальной линии b-d.


Третий случай имеет место при определенной для каждого тела температуре, когда точки b и d, сближаясь с повышением температуры, сливаются в одну точку k, в которой имеет место перегиб соответствующей изотермы, причем касательная к ней в этой точке имеет горизонтальное направление.


Точка k называется критической точкой, выше которой невозможно путем изотермического сжатия добиться перехода газа в жидкое состояние, а соответствующие ей параметры р кр, J кр и Т кр называются критическими параметрами.


Аналитически условия критического состояния тела выражаются уравнениями

Первое из них показывает, что критическая изотерма в точке k имеет горизонтальную касательную, второе – что изотерма имеет в точке k перегиб.

Используя эти уравнения совместно с уравнением состояния, можно определить значения критических параметров состояния газа.


Критические параметры определяются следующим образом .

Преобразуем уравнение Ван-дер-Ваальса:

Дифференцируем:


Определяем вторую производную:

Разделив первое уравнение на второе

и, следовательно ,

откуда


Уравнение Ван-дер-Ваальса можно представить в безразмерном виде с подстановкой.

Случайные статьи

Вверх